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Global optimization methods such as simulated annealing and 
genetic algorithms are potentially useful in attacking the multimodal 
search calculations which arise in a number of geophysical inverse 
problems. In the one-dimensional waveform inversion problem con- 
sidered here, the optimization method must find a one-dimensional 
earth structure which produces a seismogram that agrees with an 
observed seismogram. Both simulated annealing and genetic algo- 
rithms provide satisfactory performance when the earth structure has 
only 15 free parameters. As this number is increased to 22, and then 30 
parameters both techniques become more costly. Genetic algorithms, 
however, still yielded accurate solutions for problems with 30 free 
parameters, a point at which simulated annealing was only marginally 
useful. The superior performance of genetic algorithms may reflect the 
nonproximate search methods used by them or, possibly, the more 
complex and capacious memory available to a genetic algorithm for 
storing its accumulated experience. e 1992 Academic Press. Inc 

1. INTRODUCTION 

The goal of inverse theory is to find physical models 
whose calculated response fits the data to within some 
tolerance; this tolerance is based on the nature of the noise 
contaminating the data. Today inverse calculations are 
usually posed as optimization problems, the objective func- 
tions of which are related to the probability of finding the 
“true model” in a given region of model space (the domain 
of the objective function). In the Bayesian scheme this 
posterior probability density directly incorporates all the 
available prior information. Usually it is assumed that the 
posterior is unimodal, perhaps even Gaussian. Then, the 
maximum a posteriori solution to the inverse problem can 
be calculated by a classical, gradient-based optimization 
method and the reliability of the resulting model can be 
estimated by calculating moments with respect to the 
posterior-means, covariances, etc. However, for many inter- 
esting inverse calculations the posterior probability density 
is highly multimodal, so that gradient methods tend to get 
stuck in suboptimal extrema and the usual resolution 
criteria have little meaning. Further, the size of the model 
space is far too large to allow for a solution via exhaustive 
search. 

Global optimization methods are designed to overcome 
the multimodality of the objective function without 
incurring the enormous expense of exhaustive search. For 
problems with noisy data, where an exact solution is not 
required or where a near-global optimum will suffice, two 
likely candidates are simulated annealing and genetic algo- 
rithms. A significant property of both of these techniques is 
that the only information required of the objective function 
is its value at arbitrary points in its domain; in particular, 
neither algorithm requires derivative information. 

It could be argued that the multimodality of the objective 
function is the result of poor parameterization of the 
models. Or that through an ad hoc procedure one could 
produce a simpler objective function, one not requiring 
sophisticated methods. Or that by taking advantage of the 
special nature of a problem one could achieve greater 
efficiency-on that problem. All true enough. Nevertheless, 
we are interested in knowing whether general purpose 
global optimization methods are practical on realistically 
sized problems and whether they can be applied without a 
detailed understanding of the structure of the objective 
function. 

After brief explanations of simulated annealing and 
genetic algorithms, we show examples of the use of these 
methods on a nonlinear one-dimensional acoustic inverse 
scattering problem. 

2. GLOBAL OPTIMIZATION METHODS 

A few examples of the use of global optimization methods 
in seismic inversion problems have been published. For 
example, Cary and Chapman [I] use random sampling 
methods to find an ensemble of plausible trial models for use 
as the starting models in gradient-descent calculations. 
Rothman [2, 31 used simulated annealing on the very dif- 
ficult problem of computing residual statics corrections and 
Andersen et al. [4] use simulated annealing to study seismic 
deconvolution. (Since this paper was originally written, we 
have received several preprints on the use of simulated 
annealing in seismic inversion [S-7].) 

Many authors have attempted to simplify the objective 
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function in an ad hoc fashion in order to make a highly 
multimodal search problem amenable to gradient methods. 
For example, to solve a problem of waveform inversion in 
a marine refraction experiment, Chapman and Orcutt [S] 
used damped least squares to effectively low-pass filter the 
data, thus simplifying the objective function; this, combined 
with their constraints, led them to believe that they were 
able to find the global minimum of the objective function. 
Shaw and Orcutt [9] also used gradient-descent methods, 
but they tried using the envelope of the waveforms rather 
than the complete phase. Using the envelope greatly sim- 
plifies the objective function but is not without difficulties, 
as these authors note. 

Notwithstanding a few notable exceptions such as these, 
most of the energy being devoted to seismic inversion is 
being applied to gradient-descent methods. On the other 
hand, it is relatively easy to come up with interesting and 
important seismic inverse problems on which gradient 
methods are almost certainly bound to fail. Figure 1 shows 

a slice through the objective function for a problem in 
seismic statics estimation of the type studied by Rothman. 
(The objective function is defined as some measure of the 
agreement between the model response and the observed 
data; it can be defined in such a way that the “best” model 
maximizes or minimizes it.) This particular plot is for a 
small problem of 55 unknowns; it was made by fixing all but 
two unknowns with their correct value and allowing the 
remaining two to vary in a neighborhood of the true model 
(which maximizes the objective function). Our interest lies 
in seeing whether statistical methods such as simulated 
annealing and genetic algorithms can be used to reliably 
solve these complicated global optimization problems. 
Naturally we want to be able to incorporate whatever prior 
information is available, but we do not want to spend a lot 
of time generating starting models for gradient-based 
calculations. Further, we would like to take advantage of 
the statistical sampling properties of these algorithms to 
come up with some sort of global picture of the posterior 

FIG. 1. A slice through a 55-dimensional seisniic objective function associated with the problem of residual statics estimation. It was made by fixing 
all but two unknowns with their correct value and allowing the remaining two to vary in a neighborhood of the true model (which maximizes the objective 
function). 
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probability density. Owing to the multimodality of these 
objective functions, we must broaden our definition of the 
“solution” to the inverse problem. (Good discussions of 
classical statistical inference in this context are provided 
by [l&12].) If the posterior probability density looks 
anything like Fig. 1, the maximum a posteriori model is of 
little use by itself. 

Simulated annealing is based on the assumption that the 
objective function of the optimization problem is the 
Hamiltonian of a physical system in a heat bath. A Markov 
chain is used to importance sample the Boltzman distribu- 
tion, which is the equilibrium probability distribution 
associated with this hypothetical system. At very low 
temperatures only the low evergy states (minima of the 
objective function) are likely. Thus as the temperature is 
carefully lowered to the freezing point of the system, it tends 
to freeze into its lowest energy state, the global minimum of 
the objective function. 

Simulated annealing is a generalization of the Monte 
Carlo method of Metropolis et al. [ 131. Since its introduc- 
tion by Kirkpatrick et al. [14] it has been used to solve a 
variety of very difficult global optimization problems such 
as the traveling salesman problem [ 14, 151, computer- 
aided circuit design [16, 151, image processing [17], and 
seismic inversion [2, 31. An extensive bibliography to the 
simulated annealing literature can be found in [ 181. 

Genetic algorithms, on the other hand, follow an entire 
population of trial models encoded as finite-length strings. 
The elements of the population, the models, are allowed to 
mate and reproduce according to heuristics derived from 
genetics: first, fitness (i.e., the value of the objective func- 
tion) is used to determine the number of offspring 
associated with the parents; second, building blocks of the 
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FIG. 2. Percentage of uphill moves accepted at each temperature for a 
simulated annealing calculation. The sharp decrease indicates that the 
system is freezing. 

offspring’s genetic material are derived from each parent; 
and third, a low level of genetic mutation is allowed. The net 
result is an algorithm which is able to explore the model 
space very efficiently. 

Whereas simulated annealing is based upon a close 
analogy between function optimization and a physical 
system composed of particles that interact in a relatively 
simple way but are enormous in number, genetic algo- 
rithms proceed from a loose analogy between function 
optimization and a biological system composed of 
organisms that interact in a relatively complex way and are 
comparatively few in number. A generic algorithm tries to 
find an optimal answer by evolving a population of trial 
answers in a way that mimics biological evolution. If 
simulated annealing “cooks” an answer, then genetic 
algorithms “breed” one. 

Genetic algorithms were originally proposed by Holland 
[ 191 and his students as models for learning in biological 
and artificial systems and have recently begun to see 
application in practical optimization problems. Examples of 
the use of genetic algorithms in optimization include 
tomographic array design [20], circuit design [21], 
machine design [22], network optimization [23, 241, 
image processing [25], and solving nonlinear equations 
[26]. More examples and an extensive list of references can 
be found in [27]. 

3. SIMULATED ANNEALING 

Following the original publication of Kirkpatrick et al. 
[ 141 there was a burst of enthusiasm for simulated 
annealing. In spite of this, progress has been relatively slow 
due to the lack of a rigorous and reproducible method for 
calculating “optimal” annealing schedules (temperature as 
a function of time). Numerous ad hoc schedules were 
proposed, each of which worked more or less well on a given 
set of problems. This situation began to change significantly 
in 1988 when Nulton and Salamon published an annealing 
schedule based entirely on statistical mechanical ideas and 
using quantities which could be directly calculated during 
the annealing [28]. This work has since been extended in 
[4] to the point where it seems safe to say that the 
reproducible calculation of the annealing schedule is not the 
main hindrance to the use of this algorithm. 

On the other hand, as conventionally practiced, 
simulated annealing is a sort of quasi-local algorithm: infor- 
mation about the global structure of the objective function 
is accumulated one step at a time by following a Markov 
chain as it meanders around the objective function’s 
domain. It has been recognized for some time that this leads 
to a computation time which may be dominated by a length 
scale (step size or grid size) one  3  Tr 3r.2895  Tw (a ) Tj
0  5o0 Trc8256  Tw ( Tr -03Tw (one ) Tl   0e2rr 25.5 0  TD 3  Tr -0.c2dw (scale ) Tj
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referred to as “critical slowing down” [29]. Recent theoreti- 
cal work on the application of multigrid methods to Monte 
Carlo offers the hope that this difficulty may also be 
overcome (e.g., [29-311). Nevertheless, in this paper we 
consider only non-multigrid versions of the algorithm. 

Since simulated annealing is so well known and since 
several good textbooks on the subject exist (e.g., [32, IS]) 
we shall dispense with any discussion of the details of the 
algorithms except to make a few observations on the 
automatic calculation of annealing schedules. 

3.1. Automatic Calculation of Annealing Schedules 

The objective function of the optimization problem is 
taken to be the Hamiltonian of a system in a heat bath 
(canonical ensemble). As we follow along a Markov chain, 
sampling according to the Metropolis algorithm [13], we 
accumulate approximations to the partition function, 
internal energy, specific heat, and so on. In particular, the 
specific heat relates changes in temperature of the system 
with changes in the internal energy. The changes in the 
energy as a function of time are governed by the relaxation 
rate of the Markov chain, which in turn depends on the 
second largest eigenvalue of the stochastic matrix of the 
chain, in accordance with Perron-Frobenius theory [33]. 
Nulton and Salamon [28] showed how these two quan- 
tities could be related to give an implicit representation of 
the annealing schedule which minimizes excursions from 
equilibrium. Moreover, they gave an approximation for the 
relaxation rate which did not require the penultimate 
eigenvalue of the stochastic matrix. The estimation of this 
eigenvalue would be a difficult calculation for problems of 
even modest size: if we have 100 unknowns, each of which 
can take on 100 values, the number of points or states in the 
model space is 1001oo. 

In this paper we adopt a simplified version of the 
thermodynamic approach by using ensemble averages to 
estimate approximately the critical temperature of our 
system. This critical temperature represents the onset of 
long-range order (freezing) and we assume that it is 
associated, more or less, with a maximum of the ensemble- 
averaged specific heat function. Pederson [34] shows some 
examples of the calculation of the ensemble-averaged 
specific heat function. What we do differs slightly from this 
in that we average both over space and time. In other words 
we do many (several thousand or more) Monte Carlo steps 
at each temperature but average over a relatively small 
number (10 or so) of independent SA runs. 

We take these sort of estimates with a grain of salt; 
nevertheless, by looking at the specific heat as a function of 
temperature and figures such as (2) which shows a sharp 
drop in the number of uphill moves accepted, i.e., freezing, 
we are able to gauge the important range of temperatures to 
be sampled. 

3.2. Genetic Algorithms 

In the mid 1960s John Holland [19] proposed a class 
of optimization techniques that exploited an analogy 
between function optimization and the biological process of 
evolutionary adaption, These algorithms, known as genetic 
algorithms or GA’s, have been observed to provide good 
performance in a number of contexts (e.g., [35-371). 

3.2.1. The Structure of a Genetic Algorithm 

Genetic algorithms, like evolution, act on a population of 
individuals in a way that favors the creation of new 
individuals that “perform” better than their predecessors. At 
any moment, the algorithm has a pool of trial solutions that 
are treated as a population. Typically a population has from 
20 to several hundred individuals. These individuals com- 
pete for an opportunity to reproduce. “Reproduction”, as 
we will see, here means an opportunity to propagate some 
of an individual’s characteristics into the next generation. 
Candidates for reproduction are chosen probabilistically, 
but in a manner which is weighted to favor individuals that 
perform well. (Such weights are clearly not unique and 
many different weighting schemes are used in practice.) 

3.2.2. Reproduction and Representation 

Reproduction is the critical step in searching model space 
because it is the step in which new models are created. 
Reproduction consists of two substeps: selection of the 
parents and crossover, which is the construction of a child 
model from components of the parent models. 

In selection, two parents (typically) are chosen from the 
current population using a probabilistic algorithm which is 
weighted in favor of models of better performance. The 
weighting choice is important in controlling the partition of 
the algorithm’s effort between exploration and exploitation. 
A selection algorithm which gives little weight to perfor- 
mance will tend to search widely but not converge well. The 
other extreme, an algorithm that overemphasizes good 
performance, tends to converge prematurely. 

Crossover constructs a child model by splicing together 
pieces copied from the two parent models. In order to 
dissect this step, we have to consider the details of how 
models-points in model space-are represented in a GA. 
By analogy with a chromosome, we represent a model as a 
list of parameters, with each parameter drawn from a finite 
alphabet. Suppose, by way of example, that a point in model 
space is described by n real numbers: 

x = (Xl) x*, . ..) XJ. 

We assert a priori that each xi can be adequately 
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represented by limiting its domain to a finite set of values, 
and we denote the set of possible values for each xi by 

Jg = { df, df, . ..) d?} 

where ZZJ is an alphabet of ordinality IC;. (Frequently, some 
or all of the parameters in a particular application share a 
common alphabet.) We can now describe a point, CI, in this 
discretized model space that represents x. This CI is a list of 
n symbols, cli, each drawn from the alphabet, 4, 
appropriate to that parameter: 

a = (c(l) Lx*, . ..) cc,), cli E J$. 

Reproduction proceeds by assembling an offspring’s 
parameter list from components copied from its parents. 
The simplest crossover process is one-point crossover. 
Suppose, continuing with the preceding example, that the 
two parents are CI and fi: 

@I = (CI,) c12, . ..) 4 and B = (PI, b2, . . . . B,) ~1,~ Pie=& 

Select a crossover-point, j, randomly from the set 
{ 1, 2, . . . . n - 1 }. The child, y, is constructed by using the first 

j parameters of c1 and the last n - j parameters of /I. 

Y = (a,, a23 ..., a,-, Pi+ I > ...2 B,). 

There are a number of different reproductive schemes, but 
all share the property that they create new models by 
splicing together parts of existing models. This construction 
process is the heart of a nonlinear search mechanism that 
results in a surprisingly eflicient reconnaissance of model 
space. 

By way of example, many applications of GA’s use a 
binary alphabet. If we have a single model parameter which 
requires live bits of precision, then two such models would 
be (1, 0, 0, 0, 0) and (1, 1, 1, 1, 1). Effecting the crossover 
between the second and third positions yields the two 
children (1, 1, 0, 0, 0) and (1, 0, 1, 1, 1) as shown in Fig. 3. 

1 0 0 0 0 

* 

Parents 

1 1 1 1 1 

1 1 0 0 0 
Offspring 

1 0 1 1 1 

FIG. 3. In this example, each model is encoded as a binary string of 
length 5. The two upper models are the parents (and are already present in 
the population) and the two lower models are the offspring produced by 
recombination. After a crossover point is chosen randomly from the 
chromosome’s interior, each child is constructed by taking the first portion 
of its chromosome from one parent and the second portion from the other. 

AND FISCHER 

3.2.3. Mutation 

Most GA’s incorporate a low probability randomizing 
process called mutation. Mutation acts to occasionally 
randomly perturb the model parameters in the population. 
In the absence of mutation, no child could ever acquire a 
model parameter value which was not already present in the 
population. 

3.2.4. Schemata 

Holland [ 191 has provided a deep theoretical result that 
sheds light on the nature of a GA’s search. In order to state 
this result, we need the notion of regular expressions or 
schemata over the discretized model space. A schema, p, is 
a list of symbols 

P= (PI, P2r ...) PIG,), PiEgi9 

where .4& is the appropriate augmented alphabet 

5%‘; = {d,!, d;, . . . . d?, *} =&u {*} 

and where * denotes a “don’t care” value (see Fig. 4). 
Each schema, p, represents a set of points in model space. 

This set consists of all of the points in model space which are 
generated by replacing each of the *‘s in p by each of that 
parameter’s possible values. As an example, consider a 
model that has live binary parameters, then all the 
4’s = { 0, 1 } and an example model is 

lx= (0, 1, l,O, l}. 

All of the augmented alphabets are obviously LCJ?~ = (0, 1, *}. 
So, an example schema is 

This schema represents the models 

{O,l,O,O,l) and {O,l,l,O,l}. 

FIG. 4. A schema represents a class of models. The asterick is a wild 
card or “don’t care” symbol. It can take on any value in the alphabet, in this 
case 0 or 1. The four models shown are all associated with the schema 
10**1. 
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Note that 

. there are more schemata than points in model space, 

l every schema represents one or more points in model 
space, 

. every point in model space is a (degenerate) schema, 
and 

. every point in model space belongs to many schemata. 

Note that any particular schema may be present in none, 
some, or all of the models in a population; and a population 
will always contain instances of many more schemata than 
there are members of the population. 

Schemata play the central role in Holland’s analysis of 
the inner workings of GA’s because schemata, unlike 
chromosomes, have significant and calculable chances of 
surviving reproduction even when the child model is dif- 
ferent from both of its parents. Holland analyzed a simple 
(but representative) form of GA in terms of the change in 
the number of instances of a particular schema in the 
population. Define the fitness of a schema to be the average 
fitness of all of the models that are represented by that 
schema. Holland showed that the expected number of 
instances of a particular schema will approximately grow 
exponentially with an exponent that reflects the ratio of the 
fitness of the schema to the average fitness of all schemata. 

Holland’s insight suggests that GA’s are searching for 
globally distributed information about the behavior of the 
function we seek to minimize, but that the form this infor- 
mation takes is subtle. It also points out that the “state” of 
a GA is carried by the entire population of models, as 
opposed to simulated annealing, for example, in which the 
state is carried by one point. Thus in some sense, a GA has 
greater potential because it has a larger and more complex 
form of “memory” than simulated annealing. 

4. AN APPLICATION: INVERSE SCATTERING 

A basic problem in seismology is to find earth models 
whose seismic response matches the observed data. By 
seismic response we mean the solution of an initial- 
boundary value problem for the elastodynamic equations of 
motion for a particular earth model and source function, 
“observed” at various points on the earth’s surface. The 
seismic response calculation can range from the simple 
(geometrical optics approximation to the wave equation in 
a 1D acoustic model) to the very complex (complete solu- 
tion of the 3D elastodynamic equations in a heterogeneous 
medium, possibly even including the effects of anelasticity 
and anisotropy). The guiding principle which is used to 
choose the level of modeling varies, but from the standpoint 
of inverse theory it would seem to be: use only as much 
physics as is necessary to adequately Iit the data (Occam’s 
razor). 

Nothing that we have said thus far about simulated 
annealing or genetic algorithms depends on the details of 
the forward problem under consideration. Both algorithms 
interact with the outside world entirely through the objec- 
tive function; they calculate trial solutions (model vectors P) 
and pass them to a black box which is responsible for com- 
puting synthetic seismograms and returning a single num- 
ber E(p) (defined below). As a result, even though the two 
algorithms are based on very different views of the optimiza- 
tion procedure, it is easy to compare their performance since 
the same objective function calculation is used for both and 
a clear measure of the work involved in a solution to 
the inverse problem is the number of objective function 
evaluations. 

So we shall simply assume that we have recorded 
seismograms which we refer to collectively as the observed 
data. Suppose, for example, that we have a single one-com- 
ponent common-source record Sd (d for data). (A common- 
source record is the ensemble of traces or seismograms 
which record the energy of a given source.) In a two-dimen- 
sional experiment, S, would be a matrix, the number of 
rows equalling the number of samples per seismogram or 
trace and the number of columns equalling the number of 
traces. Next we define a vector p of parameters which is 
sufficient to completely characterize, in some approxima- 
tion, the seismic response of our model. For example, p 
could contain the coefficients of spline or eigenfunction 
approximations of the elastic constants (as a function of 
space), the values of the elastic constants on a grid, the coor- 
dinates of piecewise linear segments which make up 
material boundaries, time-sampled reflection coefficients 
(for the 1D problem), etc. We assume that we have n such 
parameters in total. 

The model-parameter vector p is then the input to a 
synthetic seismogram program, which produces computed 
seismic data S,(p). By varying the model, p in a systematic 
fashion we attempt to make the error between the computed 
and synthetic data 

as small as is consistent with the quality of our data. 
Alternatively, we could make the correlation or “similarity” 
between the observed and computed data as large as 
possible. The vertical bars 11. II refer to the I, norm. If we 
were assuming a unimodal posterior probability density, 
then the stopping criterion would be based on a classical 
statistical measure such as x2 (for example, [38]). In any 
event, whatever models yield acceptably small errors and 
are consistent with the constraints and prior information 
will be “solutions” to the inverse problem. 

In order to reduce the time of the calculations to a more 
manageable level, we shall restrict our attention in this 
example to the 1D inverse problem. We assume that the 



264 SCALES, SMITH, AND FISCHER 

source function is known and attempt to recover the sub- 
surface elastic properties. The 1D problem is rather special 
in that it admits an exact change of variables from 
velocity/density to reflection coefficient. In the absence of 
multiples it is easy to show that the reflectivity series (reflec- 
tion coefficient sampled at equal time increments) is exactly 
recoverable from the scattering data by deconvolution 
[39]; the objective function is exactly quadratic and so the 
problem would not be appropriate for global methods. 
However, this is not the case if we include multiples in the 
calculation. Even so, this formulation of the 1D problem is 
far simpler than the multidimensional problem since no 
corresponding (exact) change of variables exists in that case. 
If velocities and densities were used as the independent 
variables, the objective function would exhibit an even 
larger number of local minima since perturbing the 
velocities introduces phase changes in the misfit between the 
observed and computed wavelets. In fact, if velocities and 
densities are used as unknowns instead of reflection coef- 
ficients, the objective function would look very much like 
Fig. 1. This has led to a variety of strategies for treating the 
waveform inversion problem by gradient descent methods. 
Shaw and Orcutt [9] consider doing the inversion in terms 
of the envelope of the waveforms rather than the waveform 
themselves. Chapman and Orcutt [8] use damping in a 
least squares inversion to effectively low-pass filter the data. 
Their problem was sufficiently well constrained that they 
appear to have been able to find the global minimum. Cary 
and Chapman [l] use a Monte Carlo search strategy to 
generate a class of models to be input into a gradient- 
descent algorithm. They do a very careful error analysis 
based upon classical statistical inference. They also say that 
using the envelope of the waveform does not work very well 
in practice because: (a) small undulations exist in the 
envelope misfit function which define local minima, and (b) 
the global minimum associated with the envelope misfit 
function may not lie in the valley of the original misfit 
function’s global minimum. Cary and Chapman attribute 
both of these difficulties to the presense of noise in the data. 

Finally, to compute our 1D synthetic seismograms with 
multiples we use the algorithm described in [40]. With it we 
are able to compute tens of thousands of objective function 
evaluations in a matter of minutes on a Sun workstation. 

5. NUMERICAL EXAMPLESSIMULATED 
ANNEALING 

Now we consider a simple 1D acoustic inverse scattering 
problem. In all the examples, the reflection coefficients are 
constrained to lie in the interval [ - 1, 11. We simplify the 
problem even further by assuming that the source function 
is known. 

We used 15, 22, and 30 layers or reflection coefficients to 

-1.0 ’ ’ ’ 1 
0.0 5.0 10.0 15.0 

time sample 

FIG. 5. Source function and exact acoustic response for 15-layer 
problem. The source is an exponentially damped sinusoid 
sin(2ni/4) exp( -i/S), where i is the time sample. 

define the model. The elastic response of the 1D medium 
depends only on the reflection coefficients. The source func- 
tion and the exact model response for the 15 and 30 layer 
cases are shown in Fig. 5 and 6. In all cases the true model 
has two nonzero reflection coefficients (at layers 5 and 10). 

In the combinatorial versions of simulated annealing the 
moue class consists of the nearest neighbors on the hyper- 
cube. The number of nodes in this hypercube is (2”)N, 
where m is the number of bits of precision needed for each 
of the parameters (typically 4-6 bits in our case) and N is 
the number of independent model parameters. In the con- 
tinuous case we fix a step-length in advance; then at each 
step a direction is chosen with uniform probability on the 

1.0 , ” ” 1’ I., 1’ ” 1’ 

I __ source function 
A - -- true seismogram 

J 
0.0 10.0 20.0 

time sample 

30.0 

FIG. 6. Source function and exact acoustic response for 30-layer 
problem. 
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FIG. 7. Simulated annealing results for 1.5 layers. Two of the 15 reflec- 
tion coefficients are nonzero. The small stepsize is 0.02 and the large step- 
size is 0.2. Each parameter is constrained to lie in the interval [ - 1, 11. 
Each datum represents the solution obtained for an independent SA run. 

N-sphere. In other words, N- 1 angles are chosen with 
uniform probability on [0, rc] and one angle is chosen on 
[0,27r]. For this example we used the continuous form of 
simulated annealing and the fast annealing schedule of [41] 

T(t)=& 
and the logarithmic schedule 

T 
T(t)=: 

ln(1 + t)’ 

(2) 

(3) 

-0.30 
t i 

FIG. 8. Simulated annealing results for 15 layers. 5 x 10“ evaluations 
for both large and small stepsize and the exact solution. The exact solution 
represents a reflectivity series (time-sample reflection coefficient) with 
exactly 2 of the, in this case 15, reflection coefficients nonzero. 

where t is the time-step. The continuous version of the algo- 
rithm seemed to perform better than the combinatorical 
version. But by spending the time accurately estimating the 
critical temperature, the details of the annealing schedule 
did not appear to significantly influence convergence. The 
critical temperatures were estimated from the ensemble 
averaged thermodynamic properties. Figure 7 summarizes 
typical results. The error is defined to be the Euclidean norm 
of the difference between the seismogram for the correct 
model and that of the model computed at each step of the 
optimization. If we were inverting real data, these errors 
would be scaled by the data covariance. Each datum 
represents an independent SA run. We see rapid con- 
vergence to approximately correct solutions. The models 
computed after 50,000 evaluations for both large and small 
stepsize overlie the exact solution closely even though they 
still have a way to go in terms of the objective function 
(Fig. 8). The total work involved for all of our SA results is 
roughly 10 times the number of function evaluations shown 
in the figure since we typically do 10 full SA runs over a 
broad temperature range in order to ensemble estimate the 
critical temperature. In this case, this means that 5 x lo5 
additional function evaluations were required. 

As we increase the number of unknowns from 15 to 22 
and then 30, simulated annealing slows down dramatically. 
For the 22-layer problem a plausible model was reached 
after 4 x lo5 objective function evaluations (Fig. 9). Both 
nonzero reflection coefficients are partially imaged but the 
solution is rather noisy. Doubling the length of the SA run 
did not result in a noticeably superior solution. For the 30- 
layer problem only one of the nonzero reflection coefficients 
was even partially imaged after lo6 evaluations. 

0.5 

0.4 

- exact solution 
---- simulated annealing 

-0.4 - 

-0.5 

-0.6 I 

0.0 5.0 10.0 15.0 20.0 

layer 

FIG. 9. Simulated annealing results for 22 layers. Once the critical 
temperature was determined, an SA run involving 4 x 10’ function evalua- 
tions was used. 
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A possible explanation for this phenomenon is given 
in [29]: 

There are several causes [of the critical slowing down], but the 
princFpa1 one is that we introduce a tictitious small length scale a 
(the lattice spacing) into problems when the interesting physics 
takes place at a much larger scale (: (the “correlation” length). 
Generally, simulations take place in a space-time volume of sites 
(V > cd) via a local relaxation algorithm on these sites. Almost all 
location relaxation algorithms (for example, Monte Carlo heat 
bath...) converge by sending information via a random walk 
throughout the lattice. The result is a relaxation time T which 
increases as 5’. or more precisely like r’ where [z is] the dynamical 
exponent. . ..Consequently. useful results require a simulation time 
that increases as the product of the volume effects and the relaxation 
time. 

The remedy for the critical slowing down suggested in 
[29-311 is a combination of renormalization group theory 
and multigrid methods, the efficacy of which we have not yet 
investigated. 

6. NUMERICAL EXAMPLES-GENETIC ALGORITHMS 

We also applied a straightforward form of genetic 
algorithm to the 15, 22, and 30-layer, one-dimensional 
seismogram inversion calculations just discussed. Our code 
was essentially John Grefenstette’s GENESIS package.’ 

Although the objective functions we sought to minimize 
were the same as the ones to which simulated annealing was 
applied, our methodology was somewhat different. Genetic 
algorithms, so far as we are aware, do not have asymptotic 
guarantees of convergence. Consistent with this is the 
common observation that a particular genetic algorithm 
application may have a nonzero chance of running out of 
genetic variety, thus ceasing to search model space effec- 
tively before an acceptable extremum has been found. We 
have tried to accommodate this behavior here by repeating 
each calculation 10 times and explicitly noting the variation 
in algorithm behavior in the discussion. 

Table I summarizes the performance of this genetic 
algorithm as a function of the number of layers in the model. 
(We used the default GENESIS values of 200 for the 
population size, 0.6 for the crossover rate, and 0.001 for the 
mutation rate.) It shows: 

l the number of layers in the model (that is, the dimen- 
sionality of the space being searched), 

l the number of trials out of 10 that converged to the 
exact answer within the, typically, 5 x lo5 evaluations 
allowed, 

l the average number of evaluations required to achieve 
convergence (counting only the trials that converged, of 
course), and 

1 Dr. Grefenstette’s package is a very quick and painless way to get going 
in this area and it is freely available from gref@aic.nrl.navy.mil. 

TABLE I 

1D Inversion: Genetic Algorithm 

Converged Average evaluations Points in 
Reflectors in 10 trials to convergence model space 

1.5 10 4.3 x lo4 1.1 X 10’8 
22 8 1.1 X 105 3.1 X 1026 
30 3 3.1 x lo5 1.3 X 1036 

Note. The number of trials that converged to the exact answer, out of 
ten, and the average number of objective function evaluations required to 
achieve exact convergence, for a 1D seismogram inversion using a genetic 
algorithm, are tabulated as a function of the number of reflectors in the 
model. The rightmost column contains the tofu1 number of points in the 
model space. 

l the number of different models in the model space 
being searched (recall that each reflection coefficient is 
limited to 16 possible values). 

Although convergence degrades as the dimensionality of the 
model space increases, the genetic algorithm is still usefully 
successful when dimensionality has doubled in size from 15 
to 30. Note that over this range the number of possible 
solutions is squared. 

Even the models which have not converged may carry 
useful information. Figure 10 shows the average value, at 
each layer, of the reflectivity in the best model from each of 
the seven trials for 30 layers which did not converge. Also 
shown are the greatest and least values, from the set of seven 
best models, at each layer. Even though the spread of values 
at each depth is fairly large (and generally increases with 
depth), the average value shows considerable resemblance 
to the exact solution. 

- average of unconverged trials 5 
---- extrema of unconverged /’ 

0.4 
trials 

/ I 

-0.4 / !  
; I) 
i.' 

0 5 10 15 20 25 

layer 

FIG. 10. The average of the seven 30-layer trials which did not 

converge and the spread (extreme values) at each depth point. The average 
of these seven results is a modest approximation to the global optimum. 
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FIG. 11. The decimal logarithm of the misfit of the best-performing 
model in the population, as a function of the number of objective function 
evaluations, for two of the trials in the ID 30-layer inversion. The dashed 
curve is the behavior of a trial which converged to the exact solution. The 
solid curve is the behavior of a trial which stalled before reaching the exact 
solution. 

Although we will not make much of it here, it is 
interesting to examine the behavior of individual trials as 
each proceeds in its search through solution space. In 
Fig. 11 we plot the error-of-lit for the best model in the 
population as a function of the number of evaluations. This 
quantity is initially of order 10 and is exactly zero at (and 
only at) the exact solution. Results are shown for a trial 
which ultimately converged and one which did not. 

Figure 11 has two features which are frequently observed 
in applications of genetic algorithms: 

l The progress of a particular trial is often sporadic, as 
with the “converged” case in the figure. Calculations typi- 
cally progress inspurts of rapid improvement separated by 
plateaus during which little progress is apparent. 

l It is often observed that trials which progress more 
rapidly early on proceed less far in the long run. Useful 
genetic algorithms often require a careful balance between 
exploitation and exploration. 

7. CONCLUSIONS 

We have illustrated the application of two global 
optimization methods, simulated annealing and genetic 
algorithms, to nonlinear inverse problems. For 1D acoustic 
waveform inversion the objective function is a measure 
of the similarity between the observed and synthetic 
seismograms. Since we include multiples in the synthetic 
seismogram calculation, the objective function has many 

local minima. Our starting models are chosen randomly and 
apart from the barest prior information (reflection coef- 
ficients must lie between - 1 and + 1) we make no assump- 
tions about the nature of the earth models. For example, we 
do not require a prior long-wavelength velocity model as in 
linearized inversion methods, such as prestack migration or 
diffraction tomography. We do not require any kinematical 
event identification, as in travel time inversion methods. By 
using global optimization, the final solution is completely 
independent of the starting model. Further, we automati- 
cally accumulates information about the classes of different 
models which fit the data. 

Genetic algorithms have proven to be very effective at 
locating global or near-global optima even when the objec- 
tive function has complex structure. On the other hand, 
simulated annealing, with its known convergence to the 
Boltzman distribution, appears to suffer from a “critical 
slowing down” as the number of parameters increases. We 
believe this is because conventional simulated annealing, 
based upon the Metropolis Monte Carlo procedure, 
accumulates information about the objective function only 
locally via a random walk, and thus in order to learn about 
the large-scale structure of the objective function the algo- 
rithm must make many steps. In other words, the computa- 
tional complexity of a simulated annealing calculation is 
dominated by the grid size, whereas the interesting physics 
is occurring on another scale altogether. In real annealing 
this other natural scale would be the correlation length of 
the physical system. This problem may eventually be solved 
by the application of multigrid methods, but now it 
represents a barrier to the use of simulated annealing on 
large inverse problems. 

In contrast, by maintaining a population of trial models 
and by nonlinearly mixing the patterns in those models, 
genetic algorithms are able to assimilate information 
globally with each step. We seem to be able to tackle larger 
problems with genetic algorithms than with simulated 
annealing at present. 
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